Design iGuzzini iGuzzini

Letzte Aktualisierung der Informationen: Dezember 2024

Produktkonfiguration: MJ64

MJ64: Modul High Contrast L=1462 - direkte Emission mit kontrollierter Blendung - LED Neutral White integrierte dimmbare DALI-Versorgungseinheit

MJ64: Modul High Contrast L=1462 - direkte Emission mit kontrollierter Blendung - LED Neutral White integrierte dimmbare DALI-Versorgungseinheit

Beschreibung

Modulares Lichtsystem mit direktem Lichtaustritt. Modul High Contrast mit 2 Einheiten mit je 10 Elementen, zur Bestückung mit LEDs mit fester Optik - Flood-Öffnung Der strukturelle Aufbau des optischen Systems gewährleistet einen Lichtaustritt mit geringer Blendung (UGR < 19). Profil aus stranggepresstem Aluminium für die Version Minimal (frameless); partieller Blendschutz aus schwarzem Metacrylat, vorgerüstet für die Verbindung mit Endstücken auf beiden Seiten. Installation als Decken-, Wand- und Hängeleuchte; das Modul muss mit den passenden Zubehörteil-Kits kombiniert werden, je nach Art der gewählten Installation. Dimmbare elektronische DALI-Versorgungsanlage in die Leuchte integriert. LED mit hohem Farbwiedergabeindex.

Version Hängeleuchte: zu ergänzen mit Anschlussdose mit Kabel (MWG5) und Seilpendeln (MWG6); Versionen Decken- und Wandleuchte: zu ergänzen mit spezifischen Fassungen (MWG7).

Weiß (01) | Schwarz (04) | Aluminium (12)

Gewicht (Kg)

3

Deckeneinbauleuchte|Deckenanbauleuchte|Pendelleuchte

Verkabelung

Das Modul ist an den Enden mit 5-poligen Klemmenbrettern für die Durchgangsverkabelung ausgestattet. In das Modul integrierte dimmbare DALI-Versorgungseinheit.

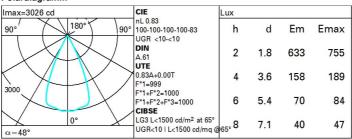
Anmekungen

Die Module High Contrast können mit den Zubehör-Endstücken (Code MX80) ergänzt und unabhängig bei den verschiedenen Anwendungen eingesetzt werden. Für Reiheninstallationen ist das Zubehörteil Code MX81 mit partiellem Blendschutz zu verwenden, geeignet für die überlappende Montage aufeinander folgender Module. Möglichkeit einer kombinierten Anwendung von Low Contrast / High Contrast.

4000

NOM-

Gemäß der Normen EN60598-1 u. Sondernormen



Technische Daten

Im System:	3417	MacAdam Step:	3		
W System:	45	Lebensdauer LED 1:	> 50,000h - L90 - B10 (Ta 25°C)		
Im Lichtquelle:	2060	Lampencode:	LED		
W Lichtquelle:	21	Anzahl Lampen in	1		
Lichtausbeute (lm/W,	75.9	Leuchtengehäuse:			
Systemwert):		ZVEI-Code:	LED		
Im im Notlichtbetrieb:	-	Anzahl Leuchtengehäuse:	2		
abgegebener Lichtstrom bei/	0	Leistungsfaktor:	Sehen Montageanleitung		
über einem Winkel von 90°		Einschaltstrom:	29 A / 180 μs		
[lm]:		Minimaler Dimmwert %:	1		
Leuchtenbetriebswirkungsgrad (L.O.R.) [%]:	183	Überspannungsschutz:	2kV Gleichtaktspannung und 1kV Gegentaktspannung		
Abstrahlwinkel [°]:	48°	Control:	DALI-2		
CRI (minimum):	95				
CRI (typisch):	97				

Polardiagramm

Farbtemperatur [K]:

Wirkungsgrad

R	77	75	73	71	55	53	33	00	DRR
***	• •	, 5	, 0	, 1		50	00	00	Ditit
K0.8	75	71	68	66	70	68	68	65	78
1.0	78	75	72	70	74	72	71	69	83
1.5	82	79	77	76	79	77	76	74	89
2.0	85	83	81	80	82	80	79	77	93
2.5	86	85	84	83	84	83	82	79	96
3.0	87	86	85	85	85	84	83	81	98
4.0	88	87	87	86	86	86	84	82	99
5.0	89	88	88	88	87	86	85	83	100

UGR-Diagramm

Corre	ected UC	R value:	s (at 206	0 Im bar	e lamp li	um ino us	flux)					
Rifled	ct.:											
ceil/cav walls work pl. Room dim x y		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30	
		0.50 0.20	0.30	0.50 0.20	0.30	0.30 0.20	0.50 0.20	0.30	0.50	0.30	0.30	
												viewed
		crosswise					endwise					
		2H	2H	1.8	2.3	2.1	2.5	2.8	1.8	2.3	2.1	2.5
	ЗН	1.7	2.1	2.0	2.4	2.7	1.7	2.1	2.0	2.4	2.7	
	4H	1.6	2.0	2.0	2.3	2.6	1.6	2.0	2.0	2.3	2.0	
	бН	1.6	1.9	1.9	2.2	2.6	1.6	1.9	1.9	2.2	2.0	
	нв	1.5	1.9	1.9	2.2	2.5	1.5	1.9	1.9	2.2	2.5	
	12H	1.5	1.8	1.9	2.2	2.5	1.5	1.8	1.9	2.2	2.5	
4H	2H	1.6	2.0	2.0	2.3	2.6	1.6	2.0	2.0	2.3	2.0	
	ЗН	1.5	1.8	1.9	2.2	2.5	1.5	1.8	1.9	2.2	2.5	
	4H	1.4	1.7	1.8	2.1	2.5	1.4	1.7	1.8	2.1	2.5	
	бН	1.3	1.6	1.7	2.0	2.4	1.3	1.6	1.7	2.0	2.	
	8H	1.3	1.5	1.7	1.9	2.4	1.3	1.5	1.7	1.9	2.	
	12H	1.2	1.4	1.7	1.9	2.3	1.2	1.4	1.7	1.9	2.	
нв	4H	1.3	1.5	1.7	1.9	2.4	1.3	1.5	1.7	1.9	2.	
	бН	1.2	1.4	1.6	1.8	2.3	1.2	1.4	1.6	1.8	2.	
	HS	1.1	1.3	1.6	1.8	2.3	1.1	1.3	1.6	1.8	2.	
	12H	1.1	1.2	1.6	1.7	2.2	1.1	1.2	1.6	1.7	2.2	
12H	4H	1.2	1.4	1.7	1.9	2.3	1.2	1.4	1.7	1.9	2.	
	бН	1.1	1.3	1.6	1.8	2.3	1.1	1.3	1.6	1.8	2.3	
	HS	1.1	1.2	1.6	1.7	2.2	1.1	1.2	1.6	1.7	2.2	
Varia	tions wi	th the ol	bserverp	noitien	at spacir	ng:						
S =	1.0H	6.9 / -18.0					6.9 / -18.0					
	1.5H	9.7 / -18.3					9.7 / -18.3					