Design iGuzzini

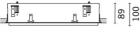
iGuzzini

Letzte Aktualisierung der Informationen: April 2025

Produktkonfiguration: MQ38

MQ38: Schwenkbare Einbauleuchte mit Rahmen 2 x 15 Zellen - LED - Warm White - Dimmbares Vorschaltgerät DALI - Beam Flood

Produktcode


MQ38: Schwenkbare Einbauleuchte mit Rahmen 2 x 15 Zellen - LED - Warm White - Dimmbares Vorschaltgerät DALI - Beam Flood

Beschreibung

Rechteckige Einbauleuchte mit LED. Strukturgehäuse aus profiliertem Stahlblech mit Anschlag-Außenrand. Der lineare Korpus aus Aluminiumdruckguss mit 15 Zellen sieht die Möglichkeit vor, die Lichtemission mit einer Schwenkung von +/- 30° auszurichten. Hochauflösungsoptiken aus metallisiertem Thermoplast, in zurückgesetzter Position in den schwarzen Blendschutz integriert; das optische System ist so strukturiert, dass kein Punkt-Effekt entsteht, sondern eine definierte, kreisförmige Lichtverteilung und eine Lichtemission mit geringer Blendung gewährleistet sind . Komplett mit dimmbarer DALI-Versorgungseinheit, die an die Leuchte angeschlossen ist. LED Warm White.

Installation

Als Einbau mit mechanischer Blockiervorrichtung in abgehängte Decken mit 1 - 25 mm Dicke; die Leuchte lässt sich sowohl an der Decke als auch an der Wand installieren (vertikal und horizontal) - Installationsausschnitt 135 x 428

435

 Λ

428x135

Gewicht (Kg)

Schwarz/Schwarz (43) | Weiß/Schwarz (47) | Grau/Schwarz (74)* 3.36

* Farben auf Anfrage

Wandeinbauleuchte|Deckeneinbauleuchte

Verkabelung

auf der Box der Versorgungseinheit: verschraubbare Anschlüsse mit Schnellanschlussklemme. Die einzelnen Leuchtkörper sind mit einer eigenen Versorgung ausgestattet und können daher einzeln eingeschaltet werden.

Möglichkeit zum Dimmen mit Taster (TOUCH DIM/PUSH): Für diese Option verweisen wir auf die in der Packung enthaltene Montageanleitung.

Gemäß der Normen EN60598-1 u. Sondernormen

Technische Daten

im System:	5103	CRI (typiscri):	92	
W System:	67.3	Farbtemperatur [K]:	3000	
Im Lichtquelle:	3150	MacAdam Step:	3	
W Lichtquelle:	29	Lebensdauer LED 1:	> 50,000h - L90 - B10 (Ta 25°C)	
Lichtausbeute (lm/W,	75.8	Lampencode:	LED	
Systemwert):		Anzahl Lampen in	1	
Im im Notlichtbetrieb:	-	Leuchtengehäuse:		
abgegebener Lichtstrom bei/	0	ZVEI-Code:	LED	
über einem Winkel von 90°		Anzahl Leuchtengehäuse:	2	
[lm]:		Control:	DALI-2	
Leuchtenbetriebswirkungsgrad	d81			

(L.O.R.) [%]:

Abstrahlwinkel [°]: 32° CRI (minimum): 90

Polardiagramm

Imax=8571 cd	CIE	Lux			
90° 180° 90°	nL 0.81 100-100-100-100-81	h	d	Em	Emax
	UGR <10-<10 DIN A.61 UTE	2	1.1	1628	2143
	0.81A+0.00T F"1=1000	4	2.3	407	536
9000	F"1+F"2=1000 F"1+F"2+F"3=1000 CIBSE	6	3.4	181	238
α=32°	LG3 L<1500 cd/m² at 65° UGR<10 L<1500 cd/mq @	_{65°} 8	4.6	102	134

Wirkungsgrad

R	77	75	73	71	55	53	33	00	DRR
K0.8	73	70	67	65	69	66	66	64	78
1.0	76	73	71	69	72	70	70	67	83
1.5	80	78	76	74	77	75	74	72	89
2.0	83	81	79	78	80	78	78	75	93
2.5	84	83	82	81	82	81	80	78	96
3.0	85	84	83	83	83	82	81	79	98
4.0	86	85	85	84	84	84	82	81	99
5.0	87	86	86	86	85	84	83	81	100

Corre	ected UC	R value	s (at 315	0 Im bar	e lamp lu	eu oni mu	flux)					
Rifled	et.:											
ceil/cav walls work pl. Room dim		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30	
		0.50	0.30 0.20	0.50 0.20	0.30	0.30	0.50 0.20	0.30	0.50	0.30	0.30	
								0.20		0.20	0.20	
		viewed					viewed					
x	У	crosswise						endwise				
2H	2H	-8.0	-7.5	-7.7	-7.3	-7.0	0.8-	-7.5	-7.7	-7.3	-7.0	
	ЗН	-8.1	-7.7	-7.8	-7.4	-7.1	-8.1	-7.7	-7.8	-7.4	-7.	
	4H	-8.2	-7.8	-7.9	-7.5	-7.2	-8.2	-7.8	-7.9	-7.5	-7.2	
	бН	-8.3	-7.9	-7.9	-7.6	-7.2	-8.3	-7.9	-7.9	-7.6	-7.3	
	HS	-8.3	-7.9	0.8-	-7.6	-7.3	-8.3	-7.9	0.8-	-7.6	-7.3	
	12H	-8.3	0.8-	0.8-	-7.6	-7.3	-8.4	0.8-	0.8-	-7.7	-7.3	
4H	2H	-8.2	-7.8	-7.9	-7.5	-7.2	-8.2	-7.8	-7.9	-7.5	-7.2	
	ЗН	-8.4	0.8-	0.8-	-7.7	-7.3	-8.4	0.8-	0.8-	-7.7	-7.3	
	4H	-8.5	-8.1	-8.1	-7.8	-7.4	-8.5	-8.1	-8.1	-7.8	-7.4	
	бН	-8.5	-8.2	-8.1	-7.8	-7.4	-8.5	-8.3	-8.1	-7.9	-7.	
	HS	-8.6	-8.3	-8.1	-7.9	-7.5	-8.6	-8.3	-8.1	-7.9	-7.5	
	12H	-8.6	-8.4	-8.1	-7.9	-7.5	-8.6	-8.4	-8.2	0.8-	-7.5	
вн	4H	-8.6	-8.3	-8.1	-7.9	-7.5	-8.6	-8.3	-8.1	-7.9	-7.5	
	6H	-8.7	-8.4	-8.2	0.8-	-7.5	-8.7	-8.4	-8.2	0.8-	-7.5	
	HS	-8.7	-8.5	-8.2	0.8-	-7.5	-8.7	-8.5	-8.2	0.8-	-7.5	
	12H	-8.7	6.8-	-8.2	-8.1	-7.6	-8.7	8.6	-8.2	-8.1	-7.6	
12H	4H	-8.6	-8.4	-8.2	0.8-	-7.5	-8.6	-8.4	-8.1	-7.9	-7.5	
	6H	-8.7	-8.5	-8.2	-8.1	-7.6	-8.7	-8.5	-8.2	0.8-	-7.5	
	HS	-8.7	-8.6	-8.2	-8.1	-7.6	-8.7	-8.6	-8.2	-8.1	-7.6	
Varia	tions wi	th the ob	oserver p	noitieo	at spacin	ıg:						
S =	1.0H	6.7 / -11.6					6.7 / -11.6					
	1.5H	9.6 / -12.2					9.6 / -12.2					
	2.0H	11.5 / -12.6					11.5 / -12.6					