Design iGuzzini iGuzzini

Last information update: October 2023

Product configuration: P910

P910: Deep Minimal - 1 element - CoB warm LED - flood beam - dimmable DALI

Product code

P910: Deep Minimal - 1 element - CoB warm LED - flood beam - dimmable DALI Attention! Code no longer in production

Technical description

Individual recessed luminaire for LED lamp. Minimal (frameless) version with no contact frame. Shaped stainless steel sheet structural frame specifically designed for flush with ceiling application using the adapter supplied. Die-cast aluminium, twin swivel universal joint located in a position set back from the installation surface to guarantee a high level of visual comfort. Tilts ± 30° around both the horizontal and vertical axes. Die-cast aluminium lighting body designed to optimise heat dispersal. High efficiency aluminium reflector - flood angle. High color rendering index, warm white LED lamp. Glass cover Control gear unit included.

Installation

Recessed in 12.5 mm thick false ceilings. The aluminium adapter is designed for filling, smoothing and finishing the false ceiling before inserting the recessed unit. Steel wire fixing springs. Preparation hole 106 x 106

Colour

White (01) | Black (04)

Mounting

ceiling recessed

Complete with DALI dimmable control gear unit connected to the luminaire. Wiring for connecting to mains network on driver terminal board.

Notes

Accessories available: refractor for elliptical flow distribution - interchangeable reflectors - adapter for installation in 15 mm thick false ceilings

Complies with EN60598-1 and pertinent regulations **3**03 **©** On the visible part of the product once installed IP23

Im system:	749	Colour temperature [K]:	3000	
W system:	10.7	MacAdam Step:	3	
Im source:	950	Life Time LED 1:	> 50,000h - L80 - B10 (Ta 25°C)	
W source:	8.4	Ballast losses [W]:	2.3	
Luminous efficiency (lm/W,	70	Lamp code:	LED	
real value):		Number of lamps for optical	1	
Im in emergency mode:	-	assembly:		
Total light flux at or above	0	ZVEI Code:	LED	
an angle of 90° [Lm]:		Number of optical	1	
Light Output Ratio (L.O.R.)	79	assemblies:		
[%]:		Control:	DALI	
Beam angle [°]:	42°			
CRI (minimum):	90			

CRI (minimum):

Polar

Imax=1639 cd CIE	Lux			
90° 180° 90°		d	Em	Emax
DIN A.61	2	1.5	328	410
UTE 0.79A+0.0 F*1-991	7	3.1	82	102
F"1+F"2=' F"1+F"2+' CIBSE		4.6	36	46
100 1001.15	00 cd/m² at 65° L<1500 cd/mq @65° 8	6.1	21	26

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	71	67	65	63	67	64	64	61	78
1.0	74	71	68	67	70	68	68	65	82
1.5	78	75	73	72	74	73	72	70	88
2.0	80	78	77	76	77	76	75	73	93
2.5	82	80	79	78	79	78	77	75	95
3.0	83	82	81	80	81	80	79	77	98
4.0	84	83	83	82	82	81	80	78	99
5.0	84	84	83	83	82	82	81	79	100

Luminance curve limit

	Carry Con	in value:	s (at 950	Im bare	lamp lu	mino us 1	lux)					
Rifled	et.:											
ceil/cav walls work pl. Room dim x y		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30	
		0.50 0.20	0.30	0.50 0.20	0.30	0.30	0.50 0.20	0.30	0.50 0.20	0.30	0.30	
								0.20		0.20	0.20	
		viewed					viewed					
			(crosswis	e	endwise						
2H	2H	3.6	4.2	3.9	4.4	4.7	3.6	4.2	3.9	4.4	4.7	
	ЗН	3.5	4.0	3.8	4.3	4.6	3.6	4.1	3.9	4.4	4.6	
	4H	3.5	3.9	3.8	4.2	4.5	3.5	4.0	3.8	4.3	4.6	
	бН	3.4	3.8	3.7	4.1	4.5	3.4	3.9	3.8	4.2	4.5	
	HS	3.4	3.8	3.7	4.1	4.4	3.4	3.8	3.8	4.2	4.5	
	12H	3.3	3.7	3.7	4.1	4.4	3.4	3.8	3.7	4.1	4.5	
4H	2H	3.5	4.0	3.8	4.3	4.6	3.5	3.9	3.8	4.2	4.5	
	ЗН	3.4	3.8	3.8	4.1	4.5	3.4	3.8	3.8	4.1	4.5	
	4H	3.3	3.7	3.7	4.0	4.4	3.3	3.7	3.7	4.0	4.4	
	6H	3.2	3.5	3.7	3.9	4.4	3.2	3.5	3.7	3.9	4.4	
	HS	3.2	3.5	3.6	3.9	4.3	3.2	3.5	3.6	3.9	4.3	
	12H	3.2	3.4	3.6	3.8	4.3	3.1	3.4	3.6	3.8	4.3	
вн	4H	3.2	3.5	3.6	3.9	4.3	3.2	3.5	3.6	3.9	4.3	
	6H	3.1	3.3	3.6	3.8	4.3	3.1	3.3	3.6	3.8	4.3	
	HS	3.1	3.3	3.5	3.7	4.2	3.1	3.3	3.5	3.7	4.2	
	12H	3.0	3.2	3.5	3.7	4.2	3.0	3.2	3.5	3.7	4.2	
12H	4H	3.1	3.4	3.6	3.8	4.3	3.2	3.4	3.6	3.8	4.3	
	6H	3.0	3.3	3.5	3.7	4.2	3.1	3.3	3.6	3.7	4.2	
	HS	3.0	3.2	3.5	3.7	4.2	3.0	3.2	3.5	3.7	4.2	
Varia	tions wi	th the ol	oserverp	osition	at spacir	ng:						
S =	1.0H	5.3 / -4.9					5.3 / -4.9					
	1.5H	8.0 / -7.8					8.0 / -7.8					