
## iGuzzini

Last information update: January 2025

## Product configuration: QS22

QS22: Frame Ø 80 - Flood beam - LED

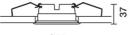


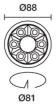


## Technical description

Ring luminaire with 6 optical elements for LED lamps - fixed optics. The optic system guarantees a high level of visual comfort and no glare. The body includes a radiant surface made of die-cast aluminium. Version includes a perimeter surface frame. High definition reflectors made of thermoplastic material vacuum-metallised with aluminium vapours, integrated in a set-back position in the antiglare screen. Supplied with a power supply unit connected to the luminaire. Central cover available with separate item code.

## Installation


Recessed with steel wire springs for false ceilings from 1 to 25 mm thick - Ø 80 installation hole.


### \_\_\_\_\_

 Colour
 Weight (Kg)

 White (01) | Black / Black (43) | Black / White (47) | White/Gold
 0.3

 (41)\* | White / burnished chrome (E7)\*
 0.3





## \* Colours on request

Mounting ceiling recessed

# Wiring

Notes

On the power supply unit with terminal board included. Available in DALI versions.

Central cover to complete the luminaire to be ordered with a separate item code - available in a standard finish, it is designed to be painted with a customised finish.



| Technical data               |      |                             |                                              |  |  |
|------------------------------|------|-----------------------------|----------------------------------------------|--|--|
| Im system:                   | 913  | Life Time LED 1:            | > 50,000h - L80 - B10 (Ta 25°C)              |  |  |
| W system:                    | 14.5 | Voltage [Vin]:              | 230                                          |  |  |
| Im source:                   | 1100 | Lamp code:                  | LED                                          |  |  |
| W source:                    | 12   | Number of lamps for optical | 1                                            |  |  |
| Luminous efficiency (Im/W,   | 63   | assembly:                   |                                              |  |  |
| real value):                 |      | ZVEI Code:                  | LED                                          |  |  |
| Im in emergency mode:        | -    | Number of optical           | 1                                            |  |  |
| Total light flux at or above | 0    | assemblies:                 |                                              |  |  |
| an angle of 90° [Lm]:        |      | Power factor:               | See installation instructions                |  |  |
| Light Output Ratio (L.O.R.)  | 83   | Inrush current:             | 5 A / 220 μs                                 |  |  |
| [%]:                         |      | Maximum number of           |                                              |  |  |
| Beam angle [°]:              | 40°  | luminaires of this type per | B10A: 81 luminaires                          |  |  |
| CRI (minimum):               | 90   | miniature circuit breaker:  | B16A: 130 luminaires<br>C10A: 135 luminaires |  |  |
| Colour temperature [K]:      | 3000 |                             |                                              |  |  |
| MacAdam Step:                | 2    |                             | C16A: 221 luminaires                         |  |  |
| ·                            |      | Minimum dimming %:          | 1                                            |  |  |
|                              |      | Control:                    | DALI-2                                       |  |  |

### Polar C75-255 CIE Imax=2081 cd Lux nL 0.83 90° 100-100-100-100-83 180° d1 d2 Em Emax 90 h UGR <10-<10 DIN 407 519 2 1.5 1.5 A.61 UTE 0.83A+0.00T 4 2.9 2.9 102 130 F"1=998 2000 F"1+F"2=1000 F"1+F"2+F"3=1000 6 4.4 45 58 4.4 CIBSE LG3 L<1500 cd/m<sup>2</sup> at 65° 0 UGR<10 | L<1500 cd/mq @658 32 5.8 5.8 25 $\alpha = 40^{\circ}$

## QS22\_EN 1 / 2

Utilisation factors

| R    | 77 | 75 | 73 | 71 | 55 | 53 | 33 | 00 | DRR |
|------|----|----|----|----|----|----|----|----|-----|
| K0.8 | 75 | 71 | 68 | 66 | 70 | 68 | 68 | 65 | 78  |
| 1.0  | 78 | 75 | 72 | 70 | 74 | 72 | 71 | 69 | 83  |
| 1.5  | 82 | 80 | 77 | 76 | 79 | 77 | 76 | 74 | 89  |
| 2.0  | 85 | 83 | 81 | 80 | 82 | 80 | 79 | 77 | 93  |
| 2.5  | 86 | 85 | 84 | 83 | 84 | 83 | 82 | 79 | 96  |
| 3.0  | 87 | 86 | 85 | 85 | 85 | 84 | 83 | 81 | 98  |
| 4.0  | 88 | 87 | 87 | 86 | 86 | 86 | 84 | 82 | 99  |
| 5.0  | 89 | 88 | 88 | 88 | 87 | 86 | 85 | 83 | 100 |

## Luminance curve limit

| ac    | Α              | G   | 1.15 | 2000 | 1000  | 500             |               | <-300    |                         |                   |
|-------|----------------|-----|------|------|-------|-----------------|---------------|----------|-------------------------|-------------------|
|       | в              |     | 1.50 |      | 2000  | 1000            | 750           | 500      | <=300                   |                   |
|       | С              |     | 1.85 |      |       | 2000            |               | 1000     | 500                     | <=300             |
|       |                |     |      |      |       |                 | ~ / ~         | / /      |                         |                   |
| 85°   |                |     |      |      |       |                 |               |          |                         | 8                 |
| 75°   |                |     |      |      |       |                 |               |          |                         | 4                 |
| 5     |                |     |      |      |       |                 |               |          |                         |                   |
| 5°    |                |     |      |      |       |                 | $\land \land$ |          |                         | 2                 |
|       |                |     |      |      |       |                 |               |          |                         | 7 -               |
| 55°   |                |     |      |      |       |                 |               |          |                         | a                 |
|       |                |     |      |      |       |                 |               | $\times$ | $\overline{\mathbb{N}}$ | h                 |
| 45° . | 0 <sup>2</sup> | _   |      | 3 4  | 568   | 10 <sup>3</sup> | 2 3           | 4 5 6    | 8 10 <sup>4</sup>       | cd/m <sup>2</sup> |
|       |                | -   | 2    | 3 4  | 5 6 8 | 10-             |               | 4 5 6    | 8 10                    | ca/m-             |
|       | C0-18          | 0 • |      |      |       |                 | C90-270 -     |          |                         |                   |

## UGR diagram

| ce il/c                       |                       |             |          |         |           |             |                  |             |      |      |      |  |
|-------------------------------|-----------------------|-------------|----------|---------|-----------|-------------|------------------|-------------|------|------|------|--|
|                               | Riflect.:<br>ceil/cav |             | 0.70     | 0.50    | 0.50      | 0.30        | 0.70             | 0.70        | 0.50 | 0.50 | 0.30 |  |
| walls<br>work pl.<br>Room dim |                       | 0.70        | 0.30     | 0.50    | 0.30      | 0.30        | 0.50             | 0.30        | 0.50 | 0.30 | 0.30 |  |
|                               |                       | 0.20        | 0.20     | 0.20    | 0.20      | 0.20        | 0.20             | 0.20        | 0.20 | 0.20 | 0.20 |  |
|                               |                       | 222023      |          | viewed  |           | viewed      |                  |             |      |      |      |  |
| x                             | У                     | crosswise   |          |         |           |             |                  | endwise     |      |      |      |  |
| 2H                            | 2H                    | 3.3         | 3.9      | 3.6     | 4.1       | 4.3         | 3.4              | 4.0         | 3.7  | 4.2  | 4.5  |  |
|                               | 3H                    | 3.2         | 3.7      | 3.5     | 4.0       | 4.2         | 3.3              | 3.8         | 3.6  | 4.1  | 4.4  |  |
|                               | 4H                    | 3.1         | 3.6      | 3.4     | 3.9       | 4.2         | 3.2              | 3.7         | 3.6  | 4.0  | 4.3  |  |
|                               | 6H                    | 3.0         | 3.5      | 3.4     | 3.8       | 4.1         | 3.1              | 3.6         | 3.5  | 3.9  | 4.2  |  |
|                               | BH                    | 3.0         | 3.4      | 3.3     | 3.7       | 4.1         | 3.1              | 3.5         | 3.5  | 3.9  | 4.2  |  |
|                               | 12H                   | 2.9         | 3.4      | 3.3     | 3.7       | 4.0         | <mark>3.1</mark> | 3.5         | 3.4  | 3.8  | 4.2  |  |
| 4H                            | 2H                    | 3.1         | 3.6      | 3.4     | 3.9       | 4.2         | 3.2              | 3.7         | 3.6  | 4.0  | 4.3  |  |
|                               | ЗH                    | 2.9         | 3.4      | 3.3     | 3.7       | 4.0         | 3.1              | 3.5         | 3.4  | 3.8  | 4.2  |  |
|                               | 4H                    | 2.9         | 3.2      | 3.3     | 3.6       | 4.0         | 3.0              | 3.3         | 3.4  | 3.7  | 4.1  |  |
|                               | 6H                    | 2.8         | 3.1      | 3.2     | 3.5       | 3.9         | 2.9              | 3.2         | 3.3  | 3.6  | 4.0  |  |
|                               | HS                    | 2.7         | 3.0      | 3.2     | 3.4       | 3.9         | 2.9              | 3.1         | 3.3  | 3.6  | 4.0  |  |
|                               | 12H                   | 2.7         | 2.9      | 3.1     | 3.4       | 3.8         | 2.8              | 3.1         | 3.3  | 3.5  | 4.0  |  |
| вн                            | 4H                    | 2.7         | 3.0      | 3.2     | 3.4       | 3.9         | 2.9              | 3.1         | 3.3  | 3.6  | 4.0  |  |
|                               | 6H                    | 2.6         | 2.9      | 3.1     | 3.3       | 3.8         | 2.8              | 3.0         | 3.2  | 3.4  | 3.9  |  |
|                               | BH                    | 2.6         | 2.8      | 3.1     | 3.2       | 3.7         | 2.7              | 2.9         | 3.2  | 3.4  | 3.9  |  |
|                               | 12H                   | 2.5         | 2.7      | 3.0     | 3.2       | 3.7         | 2.7              | 2.8         | 3.2  | 3.3  | 3.8  |  |
| 12H                           | 4H                    | 2.7         | 2.9      | 3.1     | 3.4       | 3.8         | 2.8              | 3.1         | 3.3  | 3.5  | 4.0  |  |
|                               | 6H                    | 2.6         | 2.8      | 3.1     | 3.2       | 3.7         | 2.7              | 2.9         | 3.2  | 3.4  | 3.9  |  |
|                               | 8H                    | 2.5         | 2.7      | 3.0     | 3.2       | 3.7         | 2.7              | 2.8         | 3.2  | 3.3  | 3.8  |  |
| Varia                         | tions wi              | th the ol   | pserverp | osition | at spacir | ng:         | 020              |             |      |      |      |  |
| S =                           | 1.0H                  |             | 6        | 8 / -19 | .2        | 6.9 / -18.9 |                  |             |      |      |      |  |
|                               | 1.5H                  | 9.6 / -20.8 |          |         |           |             |                  | 9.7 / -20.2 |      |      |      |  |