
iGuzzini

Last information update: May 2024

Product configuration: Q526

Q526: Minimal 1 cell - Flood beam - LED

15

25

28x28

18

Product code Q526: Minimal 1 cell - Flood beam - LED Attention! Code no longer in production

Technical description

Square miniaturised recessed luminaire for a single LED lamp - fixed optic. Despite the ultracompact size of the product, the patented technology of the optic system guarantees an efficient flow and a high level of controlled glare visual comfort. Main body with die-cast zamak radiant surface, minimal (frameless) version for mounting flush with the ceiling. Metallised, thermoplastic, high definition Opti Beam reflector, integrated in a set-back position in the anti-glare screen. Ballast not included, available with separate code

Installation

Recessed with steel wire springs on the specific adapter (included) which allows flush-mounting with the ceiling. Adapter fixed to false ceiling (compatible thicknesses of 12.5 / 15 / 20 mm) with screws; subsequent filling and smoothing operations; insertion of luminaire body and aesthetic end finishing. A special protective sheath allows finishing operations on the plasterboard to be simplified and speeded up. Preparation hole 28 x 28.

Colour White (01) Black (04) Gold (14) Burnished chrome (E6)	Weight (Kg) 0.07	
Mounting		

wall recessed ceiling recessed

Wiring

Direct current ballasts to be ordered separately: ON-OFF - code no. MXF9 (min 1 / max 8); dimmable DALI - code no. BZM4 (min 2 / max 20) - check the instruction sheet for the lengths and compatible cross-sections of the cables to be used.

Notes

The special steel wire spring provided is required to facilitate the eventual extraction of the recessed body once it has been inserted.

Complies with EN60598-1 and pertinent regulations

Technical data					
Im system:	128	CRI:	90		
W system:	2	Colour temperature [K]:	2700		
Im source:	160	MacAdam Step:	3		
W source:	2	Life Time LED 1:	> 50,000h - L80 - B10 (Ta 25°C)		
Luminous efficiency (Im/W,	64	Lamp code:	LED		
real value):		Number of lamps for optical	1		
Im in emergency mode:	-	assembly:			
Total light flux at or above	0	ZVEI Code:	LED		
an angle of 90° [Lm]:		Number of optical	1		
Light Output Ratio (L.O.R.) [%]:	80	assemblies:			
Beam angle [°]:	42°				

Polar

Imax=269 cd CIE	Lux			
90° 180° 90° nL 0.80 100-100-10		d	Em	Emax
UGR <10- DIN A.61	<10	0.8	214	268
UTE 0.80A+0.0(F*1=997	DT 2	1.5	54	67
300 F*1+F*2=9: F*1+F*2+F*		2.3	24	30
0° LG3 L<150	0 cd/m² at 65° L<1500 cd/mq @65° 4	3.1	13	17

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	72	69	66	64	68	66	65	63	78
1.0	75	72	70	68	71	69	69	66	83
1.5	79	77	75	73	76	74	73	71	89
2.0	82	80	78	77	79	77	76	74	93
2.5	83	82	81	80	81	80	79	77	96
3.0	84	83	82	82	82	81	80	78	98
4.0	85	84	84	83	83	83	81	79	99
5.0	86	85	85	84	84	83	82	80	100

Luminance curve limit

ac	A	G	1.15	2000	1000	500		<-300		
	в		1.50		2000	1000	750	500	<-300	
	C		1.85			2000		1000	500	<=300
								/ /		
85°										- 8
				-						
5°				1		11				
							\land			
85°										2
									+	a
55°										h
										\sim
	0		2	3 4	5 6 8 10	3	2 3	4 5 6	8 10 ⁴	cd/m ²
45° 1	0 ²		4							

UGR diagram

Riflec ceil/ca walls work Room x	əv pl.	0.70	0.70								
walls work Room X	pl.	0.50		0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30
Room x	200				0.30	0.50	0.30	0.50	0.30	0.30	
x	n dim			0.20	0.20	0.20					
		8323600		viewed			10.330.035		viewed		
	У		0	crosswis	e				endwise	le.	
2H	2H	7.6	8.2	7.9	8.4	8.6	7.6	8.2	7.9	8.4	8.6
	ЗH	7.5	0.8	7.8	8.3	8.5	7.5	8.0	7.8	8.2	8.8
	4H	7,4	7.9	7.7	8.2	8.5	7.4	7.9	7.7	8.2	8.5
	бH	7.3	7.8	7.7	8.1	8.4	7.3	7.8	7.7	8.1	8.4
	HB	7.3	7.7	7.7	8.1	8.4	7.3	7.7	7.6	0.8	8.4
	12H	7.3	7.7	7.7	8.1	8.4	7.2	7.6	7.6	0.8	8.3
4H	2H	7.4	7.9	7.7	8.2	8.5	7.4	7.9	7.7	8.2	8.5
	ЗH	7.2	7.7	7.6	0.8	8.3	7.3	7.7	7.6	0.8	8.4
	4H	7.2	7.5	7.6	7.9	8.3	7.2	7.5	7.6	7.9	8.3
	6H	7.1	7.4	7.5	7.8	8.2	7.1	7.4	7.5	7.8	8.2
	BH	7.1	7.4	7.5	7.8	8.2	7.0	7.3	7.5	7.8	8.2
	12H	7.1	7.4	7.5	7.8	8.2	7.0	7.3	7.5	7.7	8.2
вн	4H	7.0	7.3	7.5	7.8	8.2	7.1	7.4	7.5	7.8	8.
	6H	7.0	7.2	7.5	7.7	8.2	7.0	7.3	7.5	7.7	8.2
	8H	7.0	7.2	7.5	7.7	8.2	7.0	7.2	7.5	7.7	8.2
	12H	7.0	7.2	7.5	7.7	8.2	7.0	7.1	7.5	7.6	8.
12H	4H	7.0	7.3	7.5	7.7	8.2	7.1	7.4	7.5	7.8	8.2
	6H	7.0	7.2	7.4	7.6	8.1	7.0	7.3	7.5	7.7	8.2
	8H	7.0	7.1	7.5	7.6	8.1	7.0	7.2	7.5	7.7	8.2
Variat	tions wi	th the ol	bserverp	osition	at spacir	ng:					
S =	1.0H		6	.7 / -8	9			6	.7 / -8.	9	
	1.5H		9	.5 / -9	.1	9.5 / -9.1					