

Design iGuzzini iGuzzini

Letzte Aktualisierung der Informationen: Mai 2024

Produktkonfiguration: Q793

Q793: Minimal 9 Zellen - Wide Flood Beam - Tunable White - LED

Produktcode

Q793: Minimal 9 Zellen - Wide Flood Beam - Tunable White - LED Warnung! Code eingestellt

Beschreibung

Miniaturisierte, quadratische Einbauleuchte mit 9 optischen Elementen. Der Einsatz von LED-Lichtquellen mit hoher Farbwiedergabe und verschiedener Farbtemperatur ermöglicht eine dynamische Modulierung des Lichts. Die Variation erfolgt durch eine Mischung aus 5 LED 2700K- und 4 LED 5700K. Trotz des Unterschieds der entgegengesetzten Leuchtkanäle - 2700K und 5700K - ist der Lichtstrom derselbe, daneben bleibt die Farbtemperatur bei Leuchten verschiedener Größen immer konstant und gleichförmig. Hauptkorpus mit strahlender Oberfläche aus Aluminiumdruckguss; rahmenlose Ausführung (frameless) für die bündig mit der Decke abschließende Montage. Opti Beam-Reflektoren aus metallisiertem Thermoplast, in zurückgesetzter Position in den schwarzen Blendschutz integriert. Das Produkt ist für die Verwendung in Kombination mit dem Cod. 6170 als Lösung für kleine bis mittlere Anlagen konzipiert. Programmierbar mit DALI-Protokoll mittels simplem und bedienerfreundlichem Touchpad. Daneben sind weitere Steuerungsssteme für größere Anlagen mit separaten Codes lieferbar, welche den Einsatz eines Fachtechnikers für die Programmierung erfordern: Das Aggregat MH97 + MH93 + MI02 ermöglicht eine programmierbare DALI / KNX-Lösung - das Aggregat MH97 + MH93 + M618 ermöglicht die Ausweitung der Anlagensteuerung auch auf Remote-Endgeräte wie Tablets und Smartphones.

Installation

Zum Einbau mittels Stahldraht-Federn auf den speziellen Adapter (inbegriffen), der die bündig mit der Decke abschließende Montage ermöglicht. Befestigung des Adapters an der abgehängten Decke (kompatible Dicken 12,5/15/20mm) mit selbstschneidenden Schrauben; anschließendes Verputzen und Nachschaben; Einsetzen des Leuchten-Korpus und ästhetische Endbearbeitungen. Eine spezielle Schutzschicht vereinfacht und beschleunigt abschließende Verspachtelungen an Gipskarton. Einbauöffnung 64 x 64.

Farben Gewicht (Kg) Weiß (01) | Schwarz (04) | Gold (14) | Chrom Brüniert (E6) 0.43

Montage

Wandeinbauleuchte|Deckeneinbauleuchte

Verkabelung

DALI-Versorgungseinheit enthalten. Es sind verschiedene Steuerungslösungen mit separaten Codes erhältlich. Für die technischen Daten, Eigenschaften und Anschlussmöglichkeiten verweisen wir auf die Anweisungen.

Anmekungen

Die spezielle mitgelieferte Stahldraht-Feder sorgt für eine einfache Entnahme des Leuchtenkorpus nach erfolgter Einsetzung.

Gemäß der Normen EN60598-1 u. Sondernormen

.

Technische Daten			
Im System:	1079	Abstrahlwinkel [°]:	58°
W System:	19.7	Farbtemperatur [K]:	Tunable white 2700 - 5700
Im Lichtquelle:	1300	Lebensdauer LED 1:	> 50,000h - L80 - B10 (Ta 25°C)
W Lichtquelle:	15	Lampencode:	LED
Lichtausbeute (lm/W,	54.8	Anzahl Lampen in	1
Systemwert):		Leuchtengehäuse:	
Im im Notlichtbetrieb:	-	ZVEI-Code:	LED
abgegebener Lichtstrom bei/	0	Anzahl Leuchtengehäuse:	1
über einem Winkel von 90°		Control:	DALI
[lm]:			
Leuchtenbetriebswirkungsgra	d 83		

Polardiagramm

(L.O.R.) [%]:

Imax=1375 cd	CIE	Lux			
	nL 0.83 100-100-100-100-83	h	d	Em	Emax
	UGR 15.4-15.4 DIN A.61	1	1.1	1093	1364
	UTE 0.83A+0.00T F"1=996	2	2.2	273	341
	F"1+F"2=1000 F"1+F"2+F"3=1000 CIBSE	3	3.3	121	152
00	LG3 L<1500 cd/m² at 65° UGR<16 L<1500 cd/mq @	_{65°} 4	4.4	68	85

Wirkungsgrad

R	77	75	73	71	55	53	33	00	DRR
K0.8	75	71	68	66	70	68	68	65	78
1.0	78	75	72	70	74	72	71	69	83
1.5	82	79	77	76	78	77	76	73	89
2.0	85	83	81	80	82	80	79	77	93
2.5	86	85	84	83	84	83	82	79	96
3.0	87	86	85	85	85	84	83	81	98
4.0	88	87	87	86	86	86	84	82	99
5.0	89	88	88	88	87	86	85	83	100

Söllner-Diagramm

QC	Α	G	1.15	20	00	1	000	5	00			<=3	00				
	В		1.50			2	000	10	000	750		50	0		<=300		
	С		1.85					21	000			100	00		500		-300
			22				_	-		_ / _							
85°		_		_													8 6 4
75°															Ш		- 4
/5										7		1		-			_
65°					\perp				_	_	\rightarrow	1	>	_	_	_	2
	-											X	_		-		
55°	_						_						\rightarrow	\rightarrow	_		a
						_					1			1	_	\	h
45°.	- 2		2									7			-	_	
1	O ²		2	3	4 5	6	8	10 ³	2	3	4	5	6	8	10 ⁴	cd/	m"
	C0-180) -				_				C90-270							

Riflect ceil/ci walls work Room x	av pl.	0.70 0.50 0.20	0.70 0.30 0.20	0.50 0.50 0.20	0.50 0.30	0.30	0.70	0.70	0.50	0.50	0.30			
walls work Room x	pl. n dim y	0.50	0.30	0.50 0.20	0.30		0.70	0.70	0.50	0.50	0.30			
work Room X	pl. n dim y		0.20	0.20		0.00					0.00			
Room	n dim y	0.20				0.30	0.50	0.30	0.50	0.30	0.30			
x	У	SACSED OF	(violen d	0.20	0.20	0.20	0.20	0.20	0.20	0.20			
			0	viewed		0.000		viewed						
2H	2H		crosswise						endwise					
		16.0	16.6	16.3	16.9	17.1	16.0	16.6	16.3	16.9	17.			
	ЗН	15.9	16.4	16.2	16.7	17.0	15.9	16.4	16.2	16.7	17.			
	4H	15.8	16.3	16.2	16.6	16.9	15.8	16.3	16.2	16.6	16.			
	бН	15.7	16.2	16.1	16.5	16.8	15.7	16.2	16.1	16.5	16.			
	H8	15.7	16.2	16.1	16.5	16.8	15.7	16.2	16.1	16.5	16.			
	12H	15.7	16.1	16.0	16.4	16.8	15.7	16.1	16.0	16.4	16.			
4H	2H	15.8	16.3	16.2	16.6	16.9	15.8	16.3	16.2	16.6	16.			
	3H	15.7	16.1	16.0	16.4	16.8	15.7	16.1	16.0	16.4	16.			
	4H	15.6	16.0	16.0	16.3	16.7	15.6	16.0	16.0	16.3	16.			
	6H	15.5	15.8	15.9	16.2	16.6	15.5	15.8	15.9	16.2	16.			
	HS	15.4	15.7	15.9	16.2	16.6	15.4	15.7	15.9	16.2	16.			
	12H	15.4	15.7	15.9	16.1	16.6	15.4	15.7	15.9	16.1	16.			
вн	4H	15.4	15.7	15.9	16.2	16.6	15.4	15.7	15.9	16.2	16.			
	6H	15.4	15.6	15.8	16.0	16.5	15.4	15.6	15.8	16.0	16.			
	HS	15.3	15.5	15.8	16.0	16.5	15.3	15.5	15.8	16.0	16.			
	12H	15.3	15.4	15.8	15.9	16.4	15.2	15.4	15.8	15.9	16.			
12H	4H	15.4	15.7	15.9	16.1	16.6	15.4	15.7	15.9	16.1	16.			
	6H	15.3	15.5	15.8	16.0	16.5	15.3	15.5	15.8	16.0	16.			
	8H	15.2	15.4	15.8	15.9	16.4	15.3	15.4	15.8	15.9	16.			
Varia	tions wi	th the ob	serverp	noitieo	at spacin	ıg:								
S =	1.0H		6.	5 / -24	.9			6	.5 / -24	9				
	1.5H		9.	4 / -25	.6		9.4 / -25.6							