
Design Artec iGuzzini

Letzte Aktualisierung der Informationen: April 2025

Produktkonfiguration: P238

P238: Strahler großer Korpus - LED Neutral White - DALI-Vorschaltgerät - Wide-Flood-Optik

258

Produktcode

P238: Strahler großer Korpus - LED Neutral White - DALI-Vorschaltgerät - Wide-Flood-Optik

Beschreibung

Schwenkbarer Strahler mit Adapter für die Installation auf DALI-Stromschiene, zur Bestückung mit LEDs mit hoher Lichtausbeute und einfarbiger Lichtemission Neutral White (4000K). In das Produkt integriertes DALI-Vorschaltgerät. Die Leuchte aus Aluminiumdruckguss und Thermoplast ist um 360° vertikal und um 90° horizontal schwenkbar. Sie ist für beide Bewegungen mit mechanischen Blockierungen ausgestattet, die die Position halten und mittels eines einzigen Werkzeugs anhand von zwei Schrauben betätigt werden, eine seitlich an der Stange und eine auf dem Schienen-Adapter. Passive Wärmeableitung. Reflektor aus spiegelndem Reinstaluminium mit besonderen Facettierungen, die die Verteilung des Lichtbündels verbessern (OPTIBEAM). Der Strahler kann bis zu zwei flache Zubehörteile gleichzeitig enthalten. Als weitere externe Komponente können wahlweise Blendschutzklappen oder ein Blendschutzschirm angebracht werden. Sämtliche externen Zubehörteile können um 360° im Verhältnis zur Längsachse des Strahlers gedreht werden.

Installation

auf DALI-Stromschiene

 Farben
 Gewicht (Kg)

 Weiß (01) | Schwarz (04)
 3.05

Montage

Stromschienen dali|Wandanbauleuchte|Deckenanbauleuchte

Verkabelung

DALI-Bauteile innen im Produkt enthalten

Sistemi_di_controllo_compatibili:

Quick BLE & Quick DALI - Touch display 7" & Quick DALI LMS Quick & Master Pro Evo KNX &

Gemäß der Normen EN60598-1 u. Sondernormen

Technische Date

Im System:	6279	MacAdam Step:	2		
W System:	56.4	Lebensdauer LED 1:	> 50,000h - L90 - B10 (Ta 25°C)		
Im Lichtquelle:	8050	Lampencode:	LED		
W Lichtquelle:	51	Anzahl Lampen in	1		
Lichtausbeute (lm/W,	111.3	Leuchtengehäuse:			
Systemwert):		ZVEI-Code:	LED		
Im im Notlichtbetrieb:	-	Anzahl Leuchtengehäuse:	1		
	0	Leistungsfaktor:	Sehen Montageanleitung		
über einem Winkel von 90°		Einschaltstrom:	10 A / 200 μs		
[lm]:		maximale Anzahl Leuchten			
Leuchtenbetriebswirkungsgrad	d 78	pro Sicherungsautomat:	B10A: 18 Leuchten		
(L.O.R.) [%]:			B16A: 30 Leuchten		
Abstrahlwinkel [°]:	46°		C10A: 31 Leuchten		
CRI (minimum):	80		C16A: 51 Leuchten		
Farbtemperatur [K]:	4000	Überspannungsschutz:	5kV Gleichtaktspannung und 4kV		
			Gegentaktspannung		
		Control:	DALI-2		

Polardiagramm

Imax=12252 cd	CIE	Lux			
90° 180° 90°	nL 0.78 99-100-100-100-78	h	d	Em	Emax
	UGR <10-<10 DIN A.61 UTE	2	1.7	2399	3063
K XIXX	0.78A+0.00T F"1=988	4	3.4	600	766
12500	F"1+F"2=998 F"1+F"2+F"3=1000 CIBSE	6	5.1	267	340
α=46°	LG3 L<3000 cd/m² at 65° UGR<10 L<3000 cd/mq @	_{65°} 8	6.9	150	191

Wirkungsgrad

R	77	75	73	71	55	53	33	00	DRR
K0.8	70	66	64	62	66	63	63	61	78
1.0	73	70	68	66	69	67	67	64	82
1.5	77	74	73	71	74	72	71	69	88
2.0	79	78	76	75	76	75	74	72	93
2.5	81	79	78	77	78	77	77	74	95
3.0	82	81	80	79	80	79	78	76	97
4.0	83	82	82	81	81	80	79	77	99
5.0	83	83	82	82	82	81	80	78	100

Söllner-Diagramm

QC	Α	G	1.15	2	000		1	000		500			<=300	1		
	В		1.50				2	000		1000	75	0	500		<=300	
	С		1.85							2000			1000		500	<=300
85° г					_	_	_	=			- /					
00					-											- 8
75°				-	-			_			+				4	- 4
										1	_	1			-	
65°					+	\top	_		_	_	-					2
55°												-				a
55*													-			_ ` i
45°																
45 10) ²		2	3	4	5	6	8	10 ³		2	3 4	5 6	8	10 ⁴	cd/m ²
	C0-180)					_				C90-2	70				

Corre	ected UC	R value:	e (at 805)	0 Im bar	e lamp lu	eu oni mu	flux)				
Rifle	ct.:										
ce il/c	av	0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30
walls	3	0.50	0.30	0.50	0.30	0.30	0.50	0.30	0.50	0.30	0.30
work	pl.	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Roon	n dim			viewed					viewed		
X	У		(crosswis	е	endwise					
2H	2H	9.8	10.4	10.1	10.6	10.9	8.8	10.4	10.1	10.6	10.9
	ЗН	9.8	10.3	10.1	10.6	10.9	9.7	10.3	10.1	10.5	10.8
	4H	9.7	10.2	10.1	10.5	8.01	9.7	10.2	10.0	10.5	10.8
	бН	9.7	10.1	10.0	10.4	10.8	9.6	10.1	10.0	10.4	10.7
	HS	9.6	10.1	10.0	10.4	10.7	9.6	10.0	9.9	10.4	10.
	12H	9.6	10.0	10.0	10.3	10.7	9.5	10.0	9.9	10.3	10.7
4H	2H	9.7	10.2	10.0	10.5	8.01	9.7	10.2	10.1	10.5	10.8
	ЗН	9.7	10.1	10.0	10.4	8.01	9.7	10.1	10.1	10.4	10.8
	4H	9.6	10.0	10.0	10.4	10.7	9.6	10.0	10.0	10.4	10.7
	6H	9.6	9.9	10.0	10.3	10.7	9.6	9.9	10.0	10.3	10.7
	8H	9.5	8.8	9.9	10.2	10.7	9.5	9.8	10.0	10.2	10.7
	12H	9.5	9.7	9.9	10.2	10.6	9.5	9.7	9.9	10.2	10.
нв	4H	9.5	9.8	10.0	10.2	10.7	9.5	9.8	9.9	10.2	10.
	6H	9.4	9.7	9.9	10.1	10.6	9.4	9.7	9.9	10.1	10.
	HS	9.4	9.6	9.9	10.1	10.6	9.4	9.6	9.9	10.1	10.
	12H	9.3	9.5	9.8	10.0	10.5	9.3	9.5	8.8	10.0	10.5
12H	4H	9.5	9.7	9.9	10.2	10.6	9.5	9.7	9.9	10.2	10.
	бН	9.4	9.6	9.9	10.1	10.6	9.4	9.6	9.9	10.1	10.6
	HS	9.3	9.5	9.8	10.0	10.5	9.3	9.5	9.8	10.0	10.5
Varia	tions wi	th the ol	oserverp	noitieo	at spacin	g:					
S =	1.0H		5	.1 / -5	3	5.1 / -5.3					
	1.5H		7	.6- / 8.	9	7.8 / -6.9					
	2.0H		9	.8 / -8.	1		9.8 / -8.1				